Proof for associativity of semi-tensor product
January 29, 2023
Preliminaries
In this section we’d like to introduce some definitions and
properties involved in the proof for associativity of the semi-tensor
product.
Definition 1 (kronecker product). Let
A ∈ ℳ m × n , B ∈ ℳ p × q A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{p \times q} ,
then the kronecker product
A ⊗ B ∈ ℳ p m × q n A \otimes B \in \mathcal{M}_{pm \times qn}
is defined
A ⊗ B = [ a 11 B … a 1 n B ⋮ ⋱ ⋮ a m 1 B … a m n B ] . A \otimes B = \left[\begin{array}{ccc}
a_{11} B & \ldots & a_{1 n} B\\
\vdots & \ddots & \vdots\\
a_{m 1} B & \ldots & a_{mn} B
\end{array}\right] .
Lemma 1 . Let
A ∈ ℳ m × n A \in \mathcal{M}_{m \times n} ,
B ∈ ℳ p × q B \in \mathcal{M}_{p \times q} ,
C ∈ ℳ n × r C
\in \mathcal{M}_{n \times r} and
D ∈ ℳ q × s D \in \mathcal{M}_{q \times s} ,
then
( A ⊗ B ) ( C ⊗ D ) = ( A C ⊗ B D ) . (A \otimes B) (C \otimes D) = (AC \otimes BD) .
Definition 2 (semi-tensor product). Let
A ∈ ℳ m × n , B ∈ ℳ p × q A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{p \times q} ,
l = lcm ( n , p ) l =
{\operatorname{lcm}} (n, p) being
least common multiple of
n n
and
p p .
The semi-tensor product
⋉ \ltimes
is defined
A ⋉ B = ( A ⊗ I l / n ) ( B ⊗ I l / p ) . A \ltimes B = (A \otimes I_{l / n}) (B \otimes I_{l / p}) .
Theorem 1 (prime factorization theorem). every
integer
n n
greater than
1 1
can be represented uniquely as
n = ∏ i = 1 k p i n i , n = \prod_{i = 1}^k p_i^{n_i},
where
p 1 < p 2 < ⋯ < p k p_1 < p_2 < \cdots < p_k
are primes and the
n i n_i
are positive integers.
Corollary 1 .
a b = lcm ( a , b ) gcd ( a , b ) ab = {\operatorname{lcm}} (a, b) \gcd (a, b) .
Associativity of the
semi-tensor product
Proposition 1 . Let
A ∈ ℳ p × q A \in \mathcal{M}_{p \times q} ,
B ∈ ℳ r × s B \in \mathcal{M}_{r \times s}
and
C ∈ ℳ t × u C \in \mathcal{M}_{t \times u} ,
then
( A ⋉ B ) ⋉ C = A ⋉ ( B ⋉ C ) . (A \ltimes B) \ltimes C = A \ltimes (B \ltimes C) .
Considering that the form of
( A ⋉ B ) ⋉ C (A \ltimes B) \ltimes C
and
A ⋉ ( B ⋉ C ) A \ltimes (B
\ltimes C) are not that simple, it’s not
a wise idea to prove the proposition by directly calculate the results
of both sides and compare them. The procedure we would take is to find
some equivalent but more simple forms to test the associativity, and
then obtain the associativity of the semi-tensor product from the
equivalent forms.
Proof. Define
⋉ 0 \ltimes_0 :
A ⋉ 0 B = ( A ⊗ I r ) ( B ⊗ I q ) A \ltimes_0 B = (A \otimes I_r) (B \otimes I_q) .
Then we get
{ I r = I lcm ( q , r ) / q ⊗ I gcd ( q , r ) , I q = I lcm ( q , r ) / r ⊗ I gcd ( q , r ) . \left\{\begin{array}{l}
I_r = I_{{\operatorname{lcm}} (q, r) / q} \otimes I_{\gcd (q, r)},\\
I_q = I_{{\operatorname{lcm}} (q, r) / r} \otimes I_{\gcd (q, r) .}
\end{array}\right. Thus
( A ⋉ 0 B ) = ( A ⊗ I lcm ( q , r ) / q ⊗ I gcd ( q , r ) ) ( B ⊗ I lcm ( q , r ) / r ⊗ I gcd ( q , r ) ) = ( A ⋉ B ) ⊗ I gcd ( q , r ) . \begin{aligned}
(A \ltimes_0 B) & = (A \otimes I_{{\operatorname{lcm}} (q, r) / q} \otimes I_{\gcd
(q, r)}) (B \otimes I_{{\operatorname{lcm}} (q, r) / r} \otimes I_{\gcd (q, r)})\\
& = (A \ltimes B) \otimes I_{\gcd (q, r)} .
\end{aligned} Considering
( A ⋉ 0 B ) ⋉ 0 C (A \ltimes_0 B) \ltimes_0 C
and
A ⋉ 0 ( B ⋉ 0 C ) A \ltimes_0 (B \ltimes_0 C) ,
( A ⋉ 0 B ) ⋉ 0 C = ( ( A ⋉ 0 B ) ⊗ I t ) ( C ⊗ I q s ) = ( ( A ⊗ I r ) ( B ⊗ I q ) ⊗ I t ) ( C ⊗ I q s ) = ( A ⊗ I r t ) ( B ⊗ I q t ) ( C ⊗ I q s ) = ( A ⊗ I r t ) ( ( B ⊗ I t ) ( C ⊗ I s ) ⊗ I q ) = ( A ⊗ I r t ) ( ( B ⋉ 0 C ) ⊗ I q ) = A ⋉ 0 ( B ⋉ 0 C ) , \begin{aligned}
(A \ltimes_0 B) \ltimes_0 C & = ((A \ltimes_0 B) \otimes I_t) (C \otimes
I_{qs})\\
& = ((A \otimes I_r) (B \otimes I_q) \otimes I_t) (C \otimes I_{qs})\\
& = (A \otimes I_{rt}) (B \otimes I_{qt}) (C \otimes I_{qs})\\
& = (A \otimes I_{rt}) ((B \otimes I_t) (C \otimes I_s) \otimes I_q)\\
& = (A \otimes I_{rt}) ((B \ltimes_0 C) \otimes I_q)\\
& = A \ltimes_0 (B \ltimes_0 C),
\end{aligned} thus the operator
⋉ 0 \ltimes_0
is associative.
Then we consider the relation between
( A ⋉ 0 B ) ⋉ 0 C (A \ltimes_0 B) \ltimes_0 C
and
( A ⋉ B ) ⋉ C (A
\ltimes B) \ltimes C .
( A ⋉ 0 B ) ⋉ 0 C = ( ( A ⋉ B ) ⊗ I gcd ( q , r ) ) ⋉ 0 C = ( ( ( A ⋉ B ) ⊗ I gcd ( q , r ) ) ⋉ C ) ⊗ I gcd ( q s , t ) = ( ( ( A ⋉ B ) ⊗ I gcd ( q , r ) ) ⊗ I lcm ( q s , t ) / ( q s ) ) ( C ⊗ I lcm ( q s , t ) ) ⊗ I gcd ( q s , t ) = ( ( ( A ⋉ B ) ⊗ I gcd ( q , r ) ) ⊗ I t ) ( C ⊗ I q s ) = ( ( A ⋉ B ) ⊗ I gcd ( q , r ) t ) ( C ⊗ I q s ) \begin{aligned}
(A \ltimes_0 B) \ltimes_0 C & = ((A \ltimes B) \otimes I_{\gcd (q, r)})
\ltimes_0 C\\
& = (((A \ltimes B) \otimes I_{\gcd (q, r)}) \ltimes C) \otimes I_{\gcd
(qs, t)}\\
& = (((A \ltimes B) \otimes I_{\gcd (q, r)}) \otimes I_{{\operatorname{lcm}} (qs,
t) / (qs)}) (C \otimes I_{{\operatorname{lcm}} (qs, t)}) \otimes I_{\gcd (qs, t)}\\
& = (((A \ltimes B) \otimes I_{\gcd (q, r)}) \otimes I_t) (C \otimes
I_{qs})\\
& = ((A \ltimes B) \otimes I_{\gcd (q, r) t}) (C \otimes I_{qs})
\end{aligned} For convenience, we
denote
I { n } : = I n I \{ n \} : = I_n ,
and then we get
( ( A ⋉ B ) ⊗ I gcd ( q , r ) t ) = ( A ⋉ B ) ⊗ I { r lcm ( s lcm ( q , r ) r , t ) s lcm ( q , r ) } ⊗ I { s t lcm ( q , r ) gcd ( q , r ) r lcm ( s lcm ( q , r ) r , t ) } = ( A ⋉ B ) ⊗ I { r lcm ( s lcm ( q , r ) r , t ) s lcm ( q , r ) } ⊗ I { s q t lcm ( s lcm ( q , r ) r , t ) } = ( A ⋉ B ) ⊗ I { r lcm ( s lcm ( q , r ) r , t ) s lcm ( q , r ) } ⊗ I { gcd ( q , r ) gcd ( s lcm ( q , r ) r , t ) } , \begin{aligned}
((A \ltimes B) \otimes I_{\gcd (q, r) t}) & = (A \ltimes B) \otimes I
\left\{ \frac{r {\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t
\right)}{s {\operatorname{lcm}} (q, r)} \right\} \otimes I \left\{ \frac{st
{\operatorname{lcm}} (q, r) \gcd (q, r)}{r {\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q,
r)}{r}, t \right)} \right\}\\
& = (A \ltimes B) \otimes I \left\{ \frac{r {\operatorname{lcm}} \left( \frac{s
{\operatorname{lcm}} (q, r)}{r}, t \right)}{s {\operatorname{lcm}} (q, r)} \right\} \otimes I
\left\{ \frac{sqt}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t
\right)} \right\}\\
& = (A \ltimes B) \otimes I \left\{ \frac{r {\operatorname{lcm}} \left( \frac{s
{\operatorname{lcm}} (q, r)}{r}, t \right)}{s {\operatorname{lcm}} (q, r)} \right\} \otimes I
\left\{ \gcd (q, r) \gcd \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)
\right\},
\end{aligned} and
( C ⊗ I q s ) = C ⊗ I { lcm ( s lcm ( q , r ) r , t ) t } ⊗ I { t q s lcm ( s lcm ( q , r ) r , t ) } . (C \otimes I_{qs}) = C \otimes I \left\{ \frac{{\operatorname{lcm}} \left( \frac{s
{\operatorname{lcm}} (q, r)}{r}, t \right)}{t} \right\} \otimes I \left\{
\frac{tqs}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)}
\right\} . it’s not hard to
find that
gcd ( q , r ) gcd ( s lcm ( q , r ) r , t ) = t q s lcm ( s lcm ( q , r ) r , t ) \gcd (q, r) \gcd \left( \frac{s {\operatorname{lcm}} (q,
r)}{r}, t \right) = \frac{tqs}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q,
r)}{r}, t \right)} ,
gcd ( q , r ) gcd ( s lcm ( q , r ) r , t ) = t q s lcm ( s lcm ( q , r ) r , t ) ⇔ t q s = gcd ( q , r ) s t lcm ( q , r ) r ⇔ t q s = s q r t r , \begin{aligned}
\gcd (q, r) \gcd \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right) =
\frac{tqs}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)} &
\Leftrightarrow tqs = \gcd (q, r) \frac{st {\operatorname{lcm}} (q, r)}{r}\\
& \Leftrightarrow tqs = \frac{sqrt}{r},
\end{aligned} and that’s
trivial.
Thus we get
( A ⋉ 0 B ) ⋉ 0 C = ( ( A ⋉ B ) ⋉ C ) ⊗ I { gcd ( q , r ) gcd ( s lcm ( q , r ) r , t ) } (A \ltimes_0 B) \ltimes_0 C = ((A \ltimes B) \ltimes C) \otimes
I \left\{ \gcd (q, r) \gcd \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)
\right\} .
By the same method, we consider
A ⋉ 0 ( B ⋉ 0 C ) A \ltimes_0 (B \ltimes_0 C) .
A ⋉ 0 ( B ⋉ 0 C ) = A ⋉ 0 ( ( B ⋉ C ) ⊗ I { gcd ( s , t ) } ) = ( A ⋉ ( ( B ⋉ C ) ⊗ I { gcd ( s , t ) } ) ) ⊗ I { gcd ( q , r t ) } = ( A ⊗ I { lcm ( q , r t ) q } ) ( ( B ⋉ C ) ⊗ I { gcd ( s , t ) lcm ( q , r t ) r t } ) ⊗ I { gcd ( q , r t ) } = ( A ⊗ I { r t } ) ( ( B ⋉ C ) ⊗ I { q gcd ( s , t ) } ) \begin{aligned}
A \ltimes_0 (B \ltimes_0 C) & = A \ltimes_0 ((B \ltimes C) \otimes I \{
\gcd (s, t) \})\\
& = (A \ltimes ((B \ltimes C) \otimes I \{ \gcd (s, t) \})) \otimes I
\{ \gcd (q, rt) \}\\
& = \begin{aligned}
&\left( A \otimes I \left\{ \frac{{\operatorname{lcm}} (q, rt)}{q} \right\}
\right) \left( (B \ltimes C) \otimes I \left\{ \frac{\gcd (s, t)
{\operatorname{lcm}} (q, rt)}{rt} \right\} \right)\\ &\otimes I \{ \gcd (q, rt) \}
\end{aligned}\\
& = (A \otimes I \{ rt \}) ((B \ltimes C) \otimes I \{ q \gcd (s, t)
\})
\end{aligned}
( A ⊗ I { r t } ) = A ⊗ I { lcm ( q , r lcm ( s , t ) s ) q } ⊗ I { r t q lcm ( q , r lcm ( s , t ) s ) } \begin{aligned}
(A \otimes I \{ rt \}) & = A \otimes I \left\{ \frac{{\operatorname{lcm}} \left(
q, \frac{r {\operatorname{lcm}} (s, t)}{s} \right)}{q} \right\} \otimes I \left\{
\frac{rtq}{{\operatorname{lcm}} \left( q, \frac{r {\operatorname{lcm}} (s, t)}{s} \right)}
\right\}
\end{aligned} and
( ( B ⋉ C ) ⊗ I { q gcd ( s , t ) } ) = ( B ⋉ C ) ⊗ I { s lcm ( r lcm ( s , t ) s , q ) r lcm ( s , t ) } ⊗ I { q r t lcm ( r lcm ( s , t ) s , q ) } \begin{aligned}
((B \ltimes C) \otimes I \{ q \gcd (s, t) \}) & = (B \ltimes C) \otimes
I \left\{ \frac{s {\operatorname{lcm}} \left( \frac{r {\operatorname{lcm}} (s, t)}{s}, q
\right)}{r {\operatorname{lcm}} (s, t)} \right\} \otimes I \left\{
\frac{qrt}{{\operatorname{lcm}} \left( \frac{r {\operatorname{lcm}} (s, t)}{s}, q \right)}
\right\}
\end{aligned} so we get
A ⋉ 0 ( B ⋉ 0 C ) = ( A ⋉ ( B ⋉ C ) ) ⊗ I { q r t lcm ( q , r lcm ( s , t ) s ) } A \ltimes_0 (B \ltimes_0 C)=
(A \ltimes (B \ltimes C)) \otimes I \left\{
\frac{qrt}{{\operatorname{lcm}} \left( q, \frac{r {\operatorname{lcm}} (s, t)}{s} \right)}
\right\} .
And then we prove that
q r t lcm ( q , r lcm ( s , t ) s ) = t q s lcm ( s lcm ( q , r ) r , t ) \frac{qrt}{{\operatorname{lcm}} \left( q, \frac{r {\operatorname{lcm}}
(s, t)}{s} \right)} = \frac{tqs}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q,
r)}{r}, t \right)} .
q r t lcm ( q , r lcm ( s , t ) s ) = t q s lcm ( s lcm ( q , r ) r , t ) ⇔ r lcm ( q , r lcm ( s , t ) s ) = s lcm ( s lcm ( q , r ) r , t ) ⇔ r lcm ( s lcm ( q , r ) r , t ) = s lcm ( r lcm ( s , t ) s ) . \begin{aligned}
\frac{qrt}{{\operatorname{lcm}} \left( q, \frac{r {\operatorname{lcm}} (s, t)}{s} \right)} =
\frac{tqs}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)} &
\Leftrightarrow \frac{r}{{\operatorname{lcm}} \left( q, \frac{r {\operatorname{lcm}} (s,
t)}{s} \right)} = \frac{s}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q,
r)}{r}, t \right)}\\
& \Leftrightarrow r {\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t
\right) = s {\operatorname{lcm}} \left( \frac{r {\operatorname{lcm}} (s, t)}{s} \right) .
\end{aligned} When
q , r , s , t q, r, s, t
are coprime,
s lcm ( s lcm ( q , r ) r , t ) = s lcm ( s q , t ) = 1 q t = r p r s t / s = r lcm ( r lcm ( s , t ) s , q ) . \begin{aligned}
\frac{s}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)} & =
\frac{s}{{\operatorname{lcm}} (sq, t)}\\
& = \frac{1}{qt}\\
& = \frac{r}{prst / s}\\
& = \frac{r}{{\operatorname{lcm}} \left( \frac{r {\operatorname{lcm}} (s, t)}{s}, q
\right)} .
\end{aligned} And when they are
not coprime, Let
q = ∏ i = 1 n p i a i q = \prod_{i = 1}^n p_i^{a_i} ,
r = ∏ i = 1 n p i b i r =
\prod_{i = 1}^n p_i^{b_i} ,
s = ∏ i = 1 n p i c i s = \prod_{i = 1}^n p_i^{c_i} ,
t = ∏ i = 1 n p i d i t = \prod_{i =
1}^n p_i^{d_i} , and then we get
r lcm ( s lcm ( q , r ) r , t ) = ∏ i = 1 n p i b i lcm ( ∏ i = 1 n p i min ( a i , b i ) + c i − d i , ∏ i = 1 n p i d i ) = ∏ i = 1 n p i b i + min ( min ( a i , b i ) + c i − b i , d i ) , s lcm ( r lcm ( s , t ) s ) = ∏ i = 1 n p i c i lcm ( ∏ i = 1 n p i min ( c i , d i ) + b i − c i , ∏ i = 1 n p i a i ) = ∏ i = 1 n p i c i + min ( min ( c i , d i ) + b i − c i , a i ) . \begin{aligned}
r {\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right) & =
\prod_{i = 1}^n p_i^{b_i} {\operatorname{lcm}} \left( \prod_{i = 1}^n p_i^{\min
(a_i, b_i) + c_i - d_i}, \prod_{i = 1}^n p_i^{d_i} \right)\\
& = \prod_{i = 1}^n p_i^{b_i + \min (\min (a_i, b_i) + c_i - b_i,
d_i)},\\
s {\operatorname{lcm}} \left( \frac{r {\operatorname{lcm}} (s, t)}{s} \right) & = \prod_{i =
1}^n p_i^{c_i} {\operatorname{lcm}} \left( \prod_{i = 1}^n p_i^{\min (c_i, d_i) +
b_i - c_i}, \prod_{i = 1}^n p_i^{a_i} \right)\\
& = \prod_{i = 1}^n p_i^{c_i + \min (\min (c_i, d_i) + b_i - c_i, a_i)}
.
\end{aligned} It remains to prove
that
b i + min ( min ( a i , b i ) + c i − b i , d i ) = c i + min ( min ( c i , d i ) + b i − c i , a i ) ⇔ b i − c i + min ( min ( a i , b i ) + c i − b i , d i ) = min ( min ( c i , d i ) + b i − c i , a i ) ⇔ min ( min ( a i , b i ) , d i + b i − c i ) = min ( min ( c i , d i ) + b i − c i , a i ) ⇔ min ( min ( a i , b i ) , d i + b i − c i ) = min ( min ( b i , d i + b i − c i ) , a i ) ⇔ min ( a i , b i , d i + b i − c i ) = min ( b i , d i + b i − c i , a i ) \begin{aligned}
& b_i + \min (\min (a_i, b_i) + c_i - b_i, d_i) = c_i + \min (\min (c_i,
d_i) + b_i - c_i, a_i)\\
\Leftrightarrow &b_i - c_i + \min (\min (a_i, b_i) + c_i - b_i, d_i) = \min
(\min (c_i, d_i) + b_i - c_i, a_i) \\
\Leftrightarrow & \min (\min (a_i, b_i), d_i + b_i - c_i) = \min (\min (c_i,
d_i) + b_i - c_i, a_i) \\
\Leftrightarrow & \min (\min (a_i, b_i), d_i + b_i - c_i) = \min (\min (b_i,
d_i + b_i - c_i) , a_i) \\
\Leftrightarrow &\min (a_i, b_i, d_i + b_i - c_i) = \min (b_i, d_i + b_i -
c_i, a_i)
\end{aligned} and that’s
trivial.
Then by doing projection,
A ⋉ 0 ( B ⋉ 0 C ) = ( A ⋉ 0 B ) ⋉ 0 C ⇔ ( A ⋉ 0 ( B ⋉ 0 C ) ) Ψ = ( ( A ⋉ 0 B ) ⋉ 0 C ) Ψ ⇔ A ⋉ ( B ⋉ C ) = ( A ⋉ B ) ⋉ C , \begin{aligned}
A \ltimes_0 (B \ltimes_0 C) = (A \ltimes_0 B) \ltimes_0 C &
\Leftrightarrow (A \ltimes_0 (B \ltimes_0 C)) \Psi = ((A \ltimes_0 B)
\ltimes_0 C) \Psi\\
& \Leftrightarrow A \ltimes (B \ltimes C) = (A \ltimes B) \ltimes C,
\end{aligned} where
Ψ = ( I { q s u − q r t lcm ( q , r lcm ( s , t ) s ) } ⊗ 𝟏 { q r t lcm ( q , r lcm ( s , t ) s ) } ) = ( I { q s u − t q s lcm ( s lcm ( q , r ) r , t ) } ⊗ 𝟏 { t q s lcm ( s lcm ( q , r ) r , t ) } ) \begin{aligned}
\Psi &= \left( I \left\{ qsu -
\frac{qrt}{{\operatorname{lcm}} \left( q, \frac{r {\operatorname{lcm}} (s, t)}{s} \right)}
\right\} \otimes {\boldsymbol{1}} \left\{ \frac{qrt}{{\operatorname{lcm}} \left( q,
\frac{r {\operatorname{lcm}} (s, t)}{s} \right)} \right\} \right)\\
&= \left( I \left\{
qsu - \frac{tqs}{{\operatorname{lcm}} \left( \frac{s {\operatorname{lcm}} (q, r)}{r}, t \right)}
\right\} \otimes {\boldsymbol{1}} \left\{ \frac{tqs}{{\operatorname{lcm}} \left( \frac{s
{\operatorname{lcm}} (q, r)}{r}, t \right)} \right\} \right)
\end{aligned} ◻